Highly Reversible Sodium‐ion Storage in A Bifunctional Nanoreactor Based on Single‐atom Mn Supported on N‐doped Carbon over MoS2 Nanosheets

Author:

Sui Simi12,Xie Haonan1,Chen Biao13,Wang Tianshuai4ORCID,Qi Zijia1,Wang Jingyi1,Sha Junwei1,Liu Enzuo1,Zhu Shan2,Lei Kaixiang2,Zheng Shijian2,Zhou Guangmin5,He Chunnian136,Hu Wenbin136,He Fang1,Zhao Naiqin13

Affiliation:

1. School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300350 P. R. China E-mails

2. Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology School of Materials Science and Engineering Hebei University of Technology Tianjin 300401 People's Republic of China

3. National Industry-Education Platform of Energy Storage Tianjin University 135 Yaguan Road Tianjin 300350 People's Republic of China

4. Xi'an Key Laboratory of Functional Organic Porous Materials School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P. R. China

5. Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China

6. Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China

Abstract

AbstractConversion‐type electrode materials have gained massive research attention in sodium‐ion batteries (SIBs), but their limited reversibility hampers practical use. Herein, we report a bifunctional nanoreactor to boost highly reversible sodium‐ion storage, wherein a record‐high reversible degree of 85.65 % is achieved for MoS2 anodes. Composed of nitrogen‐doped carbon‐supported single atom Mn (NC‐SAMn), this bifunctional nanoreactor concurrently confines active materials spatially and catalyzes reaction kinetics. In situ/ex situ characterizations including spectroscopy, microscopy, and electrochemistry, combined with theoretical simulations containing density functional theory and molecular dynamics, confirm that the NC‐SAMn nanoreactors facilitate the electron/ion transfer, promote the distribution and interconnection of discharging products (Na2S/Mo), and reduce the Na2S decomposition barrier. As a result, the nanoreactor‐promoted MoS2 anodes exhibit ultra‐stable cycling with a capacity retention of 99.86 % after 200 cycles in the full cell. This work demonstrates the superiority of bifunctional nanoreactors with two‐dimensional confined and catalytic effects, providing a feasible approach to improve the reversibility for a wide range of conversion‐type electrode materials, thereby enhancing the application potential for long‐cycled SIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipal Science and Technology Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3