On the yield criterion of porous materials by the homogenization approach and Steigmann–Ogden surface model

Author:

Zheng Chenyi,Wang Hongzhen,Jiang Yali,Li Gaohui

Abstract

AbstractIn this work, we investigate the yield criterion of nanoporous materials by using homogenization approach and Steigmann–Ogden surface model. The representative volume element is proposed as an infinite matrix containing a tiny nanovoid. The matrix is incompressible, rigid-perfectly plastic, von Mises materials and nanovoids are dilute and equal in size. First, the constitutive of microscopic stress and microscopic strain rate is established based on the flow criterion. Secondly, according to the Hill’s lemma, the relationship between the macroscopic equivalent modulus and the microscopic equivalent modulus is established by homogenization approach. Thirdly, the macroscopic equivalent modulus containing the Steigmann–Ogden surface model including surface parameters, porosity and nanovoid radius is derived from the trial microscopic velocity field. Finally, an implicit macroscopic yield criterion for nanoporous materials is developed. For surface modulus, nanovoids radius and porosity studies are developed through extensive numerical experiments. The research results in this paper have reference significance for the design and manufacture of nanoporous materials.

Funder

Innovation Project of Huadong Engineering Corporation Limited

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3