Analytical solutions of a spherical nanoinhomogeneity under far-field unidirectional loading based on Steigmann–Ogden surface model

Author:

Ban Youxue1,Mi Changwen1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, China

Abstract

For a solid surface or interface that is subjected to transverse loading, the influence of its flexural resistibility to bending deformation becomes significant. A spherical inhomogeneity or void embedded in an infinite elastic medium under the application of nonhydrostatic loads represents a typical example. In this work, we consider the most fundamental loading of a far-field unidirectional tension. Analytical displacements and stresses are developed by the coupling of a Steigmann–Ogden surface mechanical model, the simple method of Boussinesq displacement potentials, the semi-inverse method of elasticity, and Legendre series representations of spherical harmonics. The problem is then solved by converting the equilibrium equations of displacement into a linear system with respect to the Legendre series coefficients. The developed solutions are general in the sense that they may reduce to their classical or Gurtin–Murdoch counterparts as special cases. Analytical expressions reveal that the derived solution depends on four dimensionless ratios from among surface material parameters, shear moduli ratio, and inhomogeneity or void radius. In particular, instead of depending on both flexural parameters in the moment–curvature relation, one fixed combination is sufficient to represent the surface flexural rigidity. This is in contrast with the influence of the in-plane elastic stiffness, in which both surface Lamé parameters matter. Parametric studies further demonstrate that, for metallic inhomogeneities or voids with radii between 10 nm and 100 nm, the effects of surface flexural rigidity on stress distributions and stress concentrations are significant.

Funder

National Natural Science Foundation of China

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3