Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method

Author:

Purnomo Adam,Hayashibe Mitsuhiro

Abstract

AbstractThe autonomous distillation of physical laws only from data is of great interest in many scientific fields. Data-driven modeling frameworks that adopt sparse regression techniques, such as sparse identification of nonlinear dynamics (SINDy) and its modifications, are developed to resolve difficulties in extracting underlying dynamics from experimental data. However, SINDy faces certain difficulties when the dynamics contain rational functions. The Lagrangian is substantially more concise than the actual equations of motion, especially for complex systems, and it does not usually contain rational functions for mechanical systems. Few proposed methods proposed to date, such as Lagrangian-SINDy we have proposed recently, can extract the true form of the Lagrangian of dynamical systems from data; however, these methods are easily affected by noise as a fact. In this study, we developed an extended version of Lagrangian-SINDy (xL-SINDy) to obtain the Lagrangian of dynamical systems from noisy measurement data. We incorporated the concept of SINDy and used the proximal gradient method to obtain sparse Lagrangian expressions. Further, we demonstrated the effectiveness of xL-SINDy against different noise levels using four mechanical systems. In addition, we compared its performance with SINDy-PI (parallel, implicit) which is a latest robust variant of SINDy that can handle implicit dynamics and rational nonlinearities. The experimental results reveal that xL-SINDy is much more robust than the existing methods for extracting the governing equations of nonlinear mechanical systems from data with noise. We believe this contribution is significant toward noise-tolerant computational method for explicit dynamics law extraction from data.

Funder

Japan Society for the Promotion of Science,Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference40 articles.

1. Popper, K. R. The Logic of Scientific Discovery (Hutchinson, 1934).

2. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

3. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).

4. Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D. & kavukcuoglu, k. Interaction Networks for Learning about objects, relations and physics. Adv. Neural Inf. Process. Syst. 29, (2016),

5. Lenz, I., Knepper, R. & Saxena, A. DeepMPC: Learning deep latent features for model predictive control. In Robotics: Science and Systems XI (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3