Author:
Du Lunjing,Li Qiang,Li Lan,Wu Yawei,Zhou Fang,Liu Binxiang,Zhao Bo,Li Xiaolong,Liu Qinlin,Kong Fanlei,Yuan Jichao
Abstract
AbstractThere is an urgent need for suitable nitrogen nutrition models for Southwest China, which take into account nutritional differences at the cultivar level, to provide scientific guidance for cultivar-specific fertilizer applications during maize production. In this study, the nitrogen-efficient maize cultivar Zhenghong 311 and the nitrogen-inefficient maize cultivar Xianyu 508 were used in a three-year field experiment and a 2-year field pot experiment with nitrogen application rates ranging from 0 to 450 kg·hm−2 to construct a critical nitrogen dilution curve model for each maize cultivar. The usefulness of this model to diagnose nitrogen status and evaluate maize fertilization needs was subsequently analyzed. We found that the critical nitrogen concentration in maize aboveground tissues was a power function of the biomass, described by the equations Nc = 26.126 W−0.292 and Nc = 25.826 W−0.302 for ZH 311 and XY 508 cultivars, respectively. The fitting degree of these equations was significant or highly significant, demonstrating the suitability of these models to diagnose N deficiency and fertilization needs in maize plants grown in the hilly areas of central Sichuan. A very significant linear positive correlation between the nitrogen nutrient index (NNI) and nitrogen concentration in the aboveground tissues was detected. Based on this, we calculated the nitrogen concentration (Nt) for an NNI equal to 1 at different maize growth stages in both cultivars and observed that the Nt value can be used as a reference index for nitrogen nutrition diagnosis. Additionally, we found a highly significant quadratic convex function relationship between the NNI (y) and the nitrogen fertilizer level (x). The following regression equations were derived for these maize cultivars with the data obtained from each growth period along five consecutive years (2011–2015): yZH 311 = − 0.000005x2 + 0.003074x + 0.553206 (R2 = 0.5432**) and yXY 508 = − 0.000004x2 + 0.002914x + 0.512555 (R2 = 0.6279**). For an NNI value equal to 1, the nitrogen application level required was 224.07 kg·hm−2 for ZH 311 and 283.01 kg·hm−2 for XY 508, indicating that the suitable application rate for the nitrogen-efficient cultivar is lower than that for the nitrogen-inefficient cultivar. Our experimental data reinforce the concept that selecting nitrogen-efficient maize cultivars is an effective technical measure to reduce nitrogen input needs and increase nitrogen use efficiency during maize production.
Funder
National Key Research and Development Program for Grain High-yield Science and Technology Innovation Project
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献