Impact of selenium addition to the cadmium-zinc-telluride matrix for producing high energy resolution X-and gamma-ray detectors

Author:

Roy Utpal N.,Camarda Giuseppe S.,Cui Yonggang,Yang Ge,James Ralph B.

Abstract

AbstractBoth material quality and detector performance have been steadily improving over the past few years for the leading room temperature radiation detector material cadmium-zinc-telluride (CdZnTe). However, although tremendous progress being made, CdZnTe still suffers from high concentrations of performance-limiting defects, such as Te inclusions, networks of sub-grain boundaries and compositional inhomogeneity due to the higher segregation coefficient of Zn. Adding as low as 2% (atomic) Se into CdZnTe matrix was found to successfully mitigate many performance-limiting defects and provide improved compositional homogeneity. Here we report record-high performance of Virtual Frisch Grid (VFG) detector fabricated from as-grown Cd0.9Zn0.1Te0.98Se0.02 ingot grown by the Traveling Heater Method (THM). Benefiting from superior material quality, we achieved superb energy resolution of 0.77% at 662 keV (as-measured without charge-loss correction algorithms) registered at room temperature. The absence of residual thermal stress in the detector was revealed from white beam X-ray topographic images, which was also confirmed by Infra-Red (IR) transmission imaging under cross polarizers. Furthermore, neither sub-grain boundaries nor their networks were observed from the X-ray topographic image. However, large concentrations of extrinsic impurities were revealed in as-grown materials, suggesting a high likelihood for further reduction in the energy resolution after improved purification of the starting material.

Funder

Office of Defense Nuclear Nonproliferation Research and Development.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3