Kelvin-Helmholtz instability in a compressible dust fluid flow

Author:

Kumar KrishanORCID,Bandyopadhyay P.ORCID,Singh SwarnimaORCID,Dharodi Vikram S.ORCID,Sen A.ORCID

Abstract

AbstractWe report the first experimental observations of a single-mode Kelvin-Helmholtz instability in a flowing dusty plasma in which the flow is compressible in nature. The experiments are performed in an inverted $$\Pi$$ Π -shaped dusty plasma experimental device in a DC glow discharge Argon plasma environment. A gas pulse valve is installed in the experimental chamber to initiate directional motion to a particular dust layer. The shear generated at the interface of the moving and stationary layers leads to the excitation of the Kelvin-Helmholtz instability giving rise to a vortex structure at the interface. The growth rate of the instability is seen to decrease with an increase in the gas flow velocity in the valve and the concomitant increase in the compressibility of the dust flow. The shear velocity is further increased by making the stationary layer to flow in an opposite direction. The magnitude of the vorticity is seen to become stronger while the vortex becomes smaller with such an increase of the shear velocity. A molecular dynamics simulation provides good theoretical support to the experimental findings.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3