Author:
Li Z.,Wang X. Q.,Xu Y.,Liu H. F.,Huang J.
Abstract
AbstractThe nonlinear interaction between the double tearing mode (DTM) and Kelvin–Helmholtz (KH) instabilities with different shear flow profiles has been numerically investigated via the use of a compressible magnetohydrodynamics (MHD) model. We focus on KH instabilities in weak and reversed magnetic shear plasmas with strong stabilizing effect of field line bending. Results show that KH instabilities coupled with DTMs occur in these plasmas and the KH mode dominates the instability dynamics, suggesting the crucial role of weak magnetic shear in the formation of high-mode harmonics. For symmetric flows, an asymmetric forced magnetic reconnection configuration is maintained during the growth phase, leading to interlocking of the modes. Additionally, this investigation of the DTM-KH instability interaction contributes to our understanding of the nonlinear reconnection mechanism in the regime of weak and reversed magnetic shear plasmas, which is relevant for astrophysical and fusion studies.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Science and Technology Plan Project in Sichuan Province of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献