Deep learning early stopping for non-degenerate ghost imaging

Author:

Moodley Chané,Sephton Bereneice,Rodríguez-Fajardo Valeria,Forbes Andrew

Abstract

AbstractQuantum ghost imaging offers many advantages over classical imaging, including the ability to probe an object with one wavelength and record the image with another (non-degenerate ghost imaging), but suffers from slow image reconstruction due to sparsity and probabilistic arrival positions of photons. Here, we propose a two-step deep learning approach to establish an optimal early stopping point based on object recognition, even for sparsely filled images. In step one we enhance the reconstructed image after every measurement by a deep convolutional auto-encoder, followed by step two in which a classifier is used to recognise the image. We test this approach on a non-degenerate ghost imaging setup while varying physical parameters such as the mask type and resolution. We achieved a fivefold decrease in image acquisition time at a recognition confidence of $$75\%$$ 75 % . The significant reduction in experimental running time is an important step towards real-time ghost imaging, as well as object recognition with few photons, e.g., in the detection of light sensitive structures.

Funder

Council for Scientific and Industrial Research, South Africa

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. All-digital quantum ghost imaging: tutorial;Journal of the Optical Society of America B;2023-11-13

2. Deep learning approach for denoising low-SNR correlation plenoptic images;Scientific Reports;2023-11-10

3. Soil CT image quality enhancement via an improved super-resolution reconstruction method based on GAN;Computers and Electronics in Agriculture;2023-10

4. Patterns for all-digital quantum ghost imaging generated by the Ising model;Optics & Laser Technology;2023-08

5. Autoencoder for Single-pixel imaging;2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3