All-digital quantum ghost imaging: tutorial

Author:

Moodley Chané1ORCID,Forbes AndrewORCID

Affiliation:

1. QLAB, Raphta (PTY) LTD

Abstract

Quantum ghost imaging offers many advantages over classical imaging, including the ability to probe an object with one wavelength and record the image with another, while low photon fluxes offer the ability to probe objects with fewer photons, thereby avoiding photo-damage to light sensitive structures such as biological organisms. Progressively, ghost imaging has advanced from single-pixel scanning systems to two-dimensional (2D) digital projective masks, which offer a reduction in image reconstruction times through shorter integration times. In this tutorial, we describe the essential ingredients in an all-digital quantum ghost imaging experiment and guide the user on important considerations and choices to make, aided by practical examples of implementation. We showcase several image reconstruction algorithms using two different 2D projective mask types and discuss the utility of each. We additionally discuss a notable artifact of a specific reconstruction algorithm and projective mask combination and detail how this artifact can be used to retrieve an image signal heavily buried under artifacts. Finally, we end with a brief discussion on artificial intelligence (AI) and machine learning techniques used to reduce image reconstruction times. We believe that this tutorial will be a useful guide to those wishing to enter the field, as well as those already in the field who wish to introduce AI and machine learning to their toolbox.

Funder

Council for Scientific and Industrial Research, South Africa

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Correlation Enhanced Optical Imaging;Quantum Beam Science;2024-08-02

2. Advances in Quantum Imaging with Machine Intelligence;Laser & Photonics Reviews;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3