Author:
You Taeyi,Im Geun Ho,Kim Seong-Gi
Abstract
AbstractMouse fMRI under anesthesia has become increasingly popular due to improvement in obtaining brain-wide BOLD response. Medetomidine with isoflurane has become well-accepted for resting-state fMRI, but whether this combination allows for stable, expected, and robust brain-wide evoked response in mice has yet to be validated. We thus utilized intravenous infusion of dexmedetomidine with inhaled isoflurane and intravenous infusion of ketamine/xylazine to elucidate whether stable mouse physiology and BOLD response are obtainable in response to simultaneous forepaw and whisker-pad stimulation throughout 8 h. We found both anesthetics result in hypercapnia with depressed heart rate and respiration due to self-breathing, but these values were stable throughout 8 h. Regardless of the mouse condition, brain-wide, robust, and stable BOLD response throughout the somatosensory axis was observed with differences in sensitivity and dynamics. Dexmedetomidine/isoflurane resulted in fast, boxcar-like, BOLD response with consistent hemodynamic shapes throughout the brain. Ketamine/xylazine response showed higher sensitivity, prolonged BOLD response, and evidence for cortical disinhibition as significant bilateral cortical response was observed. In addition, differing hemodynamic shapes were observed between cortical and subcortical areas. Overall, we found both anesthetics are applicable for evoked mouse fMRI studies.
Funder
Institute for Basic Science Korea
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Kim, S.-G. & Ogawa, S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 32, 1188–1206 (2012).
2. Jonckers, E., Shah, D., Hamaide, J., Verhoye, M. & Van der Linden, A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front. Pharmacol. 6, 1–19 (2015).
3. Kim, S.-G. Biophysics of BOLD fMRI investigated with animal models. J. Magn. Reson. 292, 82–89 (2018).
4. Baltes, C., Bosshard, S., Mueggler, T., Ratering, D. & Rudin, M. Increased blood oxygen level-dependent (BOLD) sensitivity in the mouse somatosensory cortex during electrical forepaw stimulation using a cryogenic radiofrequency probe. NMR Biomed. 24, 439–446 (2011).
5. Reimann, H. M. & Niendorf, T. The (Un)conscious mouse as a model for human brain functions: key principles of anesthesia and their impact on translational neuroimaging. Front. Syst. Neurosci. 14, 1–42 (2020).
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献