Human intracranial recordings reveal distinct cortical activity patterns during invasive and non-invasive vagus nerve stimulation

Author:

Schuerman William L.ORCID,Nourski Kirill V.ORCID,Rhone Ariane E.,Howard Matthew A.,Chang Edward F.ORCID,Leonard Matthew K.

Abstract

AbstractVagus nerve stimulation (VNS) is being used increasingly to treat a wide array of diseases and disorders. This growth is driven in part by the putative ability to stimulate the nerve non-invasively. Despite decades of use and a rapidly expanding application space, we lack a complete understanding of the acute effects of VNS on human cortical neurophysiology. Here, we investigated cortical responses to sub-perceptual threshold cervical implanted (iVNS) and transcutaneous auricular (taVNS) vagus nerve stimulation using intracranial neurophysiological recordings in human epilepsy patients. To understand the areas that are modulated by VNS and how they differ depending on invasiveness and stimulation parameters, we compared VNS-evoked neural activity across a range of stimulation modalities, frequencies, and amplitudes. Using comparable stimulation parameters, both iVNS and taVNS caused subtle changes in low-frequency power across broad cortical networks, which were not the same across modalities and were highly variable across participants. However, within at least some individuals, it may be possible to elicit similar responses across modalities using distinct sets of stimulation parameters. These results demonstrate that both invasive and non-invasive VNS cause evoked changes in activity across a set of highly distributed cortical networks that are relevant to a diverse array of clinical, rehabilitative, and enhancement applications.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

United States Department of Defense | Defense Advanced Research Projects Agency

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3