EEG denoising during transcutaneous auricular vagus nerve stimulation across simulated, phantom and human data

Author:

Woller Joshua P.ORCID,Menrath DavidORCID,Gharabaghi AlirezaORCID

Abstract

AbstractObjectiveThe acquisition of electroencephalogram (EEG) data during neurostimulation, particularly concurrent transcutaneous electrical stimulation of the auricular vagus nerve, introduces unique challenges for data preprocessing and analysis due to the presence of significant stimulation artifacts. This study evaluates various denoising techniques to address these challenges effectively.MethodsA variety of denoising techniques were investigated, including interpolation methods, spectral filtering, and spatial filtering techniques. The techniques evaluated included low-pass and notch filtering, spectrum interpolation, average artifact subtraction, the Zapline algorithm, and advanced methods such as independent component analysis (ICA), signal-space projection (SSP), and generalized eigendecomposition with stimulation artifact source separation (GED/SASS). The efficacy of these algorithms was evaluated across three distinct datasets: simulated data, data from a gelatin phantom model, and real human subject data.ResultsOur findings indicate that GED (SASS) and SSP significantly outperformed other methods in reducing artifacts while preserving the integrity of the EEG signal. ICA and Zapline were effective too, but came with important limitations. These methods demonstrated robustness across different data types and conditions, providing effective artifact mitigation with minimal disruption to other essential signal components.ConclusionThis comprehensive analysis demonstrates the efficacy of advanced spatial filtering techniques in the preprocessing of EEG data during auricular vagus nerve stimulation. These methods offer promising avenues for enhancing the quality and reliability of neurostimulation-associated EEG data, facilitating a deeper understanding and wider applications in clinical and research settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3