Development of Decision Forest Models for Prediction of Drug-Induced Liver Injury in Humans Using A Large Set of FDA-approved Drugs
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://www.nature.com/articles/s41598-017-17701-7.pdf
Reference49 articles.
1. Mosedale, M. & Watkins, P. B. Drug-induced liver injury: Advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther, https://doi.org/10.1002/cpt.564 (2016).
2. Sarges, P., Steinberg, J. M. & Lewis, J. H. Drug-Induced Liver Injury: Highlights from a Review of the 2015 Literature. Drug Saf 39, 801–821, https://doi.org/10.1007/s40264-016-0427-8 (2016).
3. Chen, M. et al. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs. Toxicol Sci 136, 242–249, https://doi.org/10.1093/toxsci/kft189 (2013).
4. Chen, M., Borlak, J. & Tong, W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug‐induced liver injury. Hepatology 58, 388–396, https://doi.org/10.1002/hep.26208 (2013).
5. Liu, Z. et al. Translating clinical findings into knowledge in drug safety evaluation-drug induced liver injury prediction system (DILIps). PLoS Comput Biol 7, e1002310, https://doi.org/10.1371/journal.pcbi.1002310 (2011).
Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unlocking the potential of AI: Machine learning and deep learning models for predicting carcinogenicity of chemicals;Journal of Environmental Science and Health, Part C;2024-09-03
2. Comprehensive hepatotoxicity prediction: ensemble model integrating machine learning and deep learning;Frontiers in Pharmacology;2024-08-21
3. Machine learning and deep learning approaches for enhanced prediction of hERG blockade: a comprehensive QSAR modeling study;Expert Opinion on Drug Metabolism & Toxicology;2024-07-02
4. Machine Learning to Predict Drug-Induced Liver Injury and Its Validation on Failed Drug Candidates in Development;Toxics;2024-05-24
5. Advancing Adverse Drug Reaction Prediction with Deep Chemical Language Model for Drug Safety Evaluation;International Journal of Molecular Sciences;2024-04-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3