The application of improved densenet algorithm in accurate image recognition

Author:

Hou Yuntao,Wu Zequan,Cai Xiaohua,Zhu Tianyu

Abstract

AbstractImage recognition technology belongs to an important research field of artificial intelligence. In order to enhance the application value of image recognition technology in the field of computer vision and improve the technical dilemma of image recognition, the research improves the feature reuse method of dense convolutional network. Based on gradient quantization, traditional parallel algorithms have been improved. This improvement allows for independent parameter updates layer by layer, reducing communication time and data volume. The introduction of quantization error reduces the impact of gradient loss on model convergence. The test results show that the improvement strategy designed by the research improves the model parameter efficiency while ensuring the recognition effect. Narrowing the learning rate is conducive to refining the updating granularity of model parameters, and deepening the number of network layers can effectively improve the final recognition accuracy and convergence effect of the model. It is better than the existing state-of-the-art image recognition models, visual geometry group and EfficientNet. The parallel acceleration algorithm, which is improved by the gradient quantization, performs better than the traditional synchronous data parallel algorithm, and the improvement of the acceleration ratio is obvious. Compared with the traditional synchronous data parallel algorithm and stale synchronous parallel algorithm, the optimized parallel acceleration algorithm of the study ensures the image data training speed and solves the bottleneck problem of communication data. The model designed by the research improves the accuracy and training speed of image recognition technology and expands the use of image recognition technology in the field of computer vision.Please confirm the affiliation details of [1] is correct.The relevant detailed information in reference [1] has been confirmed to be correct.

Funder

Scientific Research Project of Heilongjiang Academy of Agricultural Sciences, "Research and promotion of intelligent agricultural machinery testing equipment"

Major Projects of Key R&D plans in Heilongjiang Province, "Trial Production and Seeding Performance Testing of Electric Drive High-speed Seeder Test Bench"

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3