Image classification method of cashmere and wool based on the multi-feature selection and random forest method

Author:

Zhu Yaolin12,Duan Jiameng1ORCID,Li Yunhong1,Wu Tong1

Affiliation:

1. School of Electronics and Information, Xi’an Polytechnic University, China

2. school of Electronics and Information, Northwestern Polytechnical University, China

Abstract

Cashmere and wool play an important role in the wool industry and textile industry, and suitable features are the key to identifying them. To obtain effective features and improve the accuracy of cashmere and wool classification, the multi-feature selection and random forest method is used to express in this article. Firstly, the gray-gradient co-occurrence matrix model is used for texture feature extraction to construct the original high-dimensional feature data set; secondly, considering that the original feature data set contains a large number of invalid and redundant features, the feature selection algorithm combining correlation analysis and principal component analysis–weight coefficient evaluation is used to obtain important features, independent features, and principal component sensitive features to complement each other; last but not least, the optimized random forest model analyzes the results. The results show that the combination of multi-feature selection subsets and random forest makes the classification accuracy of cashmere and wool more reliable, and the accuracy fluctuates around 90%.

Funder

Shaoxing Keqiao District West Textile Industry Innovation Research Institute Project

Collaborative Innovation Center Project of Industrial Textiles, 2020 Key Research Plan of Shaanxi Provincial Education Department

Science and technology innovation new town project of Yulin science and Technology Bureau

The service local science research plan of Shaanxi Provincial Department of education

The program general projects of Shaanxi Provincial Department of Science and Technology Key R & D

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3