Machine learning algorithms for predicting days of high incidence for out-of-hospital cardiac arrest

Author:

Shimada-Sammori Kaoru,Shimada Tadanaga,Miura Rie E.,Kawaguchi Rui,Yamao Yasuo,Oshima Taku,Oami Takehiko,Tomita Keisuke,Shinozaki Koichiro,Nakada Taka-aki

Abstract

AbstractPredicting out-of-hospital cardiac arrest (OHCA) events might improve outcomes of OHCA patients. We hypothesized that machine learning algorithms using meteorological information would predict OHCA incidences. We used the Japanese population-based repository database of OHCA and weather information. The Tokyo data (2005–2012) was used as the training cohort and datasets of the top six populated prefectures (2013–2015) as the test. Eight various algorithms were evaluated to predict the high-incidence OHCA days, defined as the daily events exceeding 75% tile of our dataset, using meteorological and chronological values: temperature, humidity, air pressure, months, days, national holidays, the day before the holidays, the day after the holidays, and New Year’s holidays. Additionally, we evaluated the contribution of each feature by Shapley Additive exPlanations (SHAP) values. The training cohort included 96,597 OHCA patients. The eXtreme Gradient Boosting (XGBoost) had the highest area under the receiver operating curve (AUROC) of 0.906 (95% confidence interval; 0.868–0.944). In the test cohorts, the XGBoost algorithms also had high AUROC (0.862–0.923). The SHAP values indicated that the “mean temperature on the previous day” impacted the most on the model. Algorithms using machine learning with meteorological and chronological information could predict OHCA events accurately.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated machine learning-based model for predicting benign anastomotic strictures in patients with rectal cancer who have received anterior resection;European Journal of Surgical Oncology;2023-12

2. An Intelligent Humidity and Temperature Monitoring System using Long Short-Term Memory Neural Network and Raspberry Pi;2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2023-11-19

3. A Systematic Review of Medical Expert Systems for Cardiac Arrest Prediction;Current Bioinformatics;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3