Author:
Shimada-Sammori Kaoru,Shimada Tadanaga,Miura Rie E.,Kawaguchi Rui,Yamao Yasuo,Oshima Taku,Oami Takehiko,Tomita Keisuke,Shinozaki Koichiro,Nakada Taka-aki
Abstract
AbstractPredicting out-of-hospital cardiac arrest (OHCA) events might improve outcomes of OHCA patients. We hypothesized that machine learning algorithms using meteorological information would predict OHCA incidences. We used the Japanese population-based repository database of OHCA and weather information. The Tokyo data (2005–2012) was used as the training cohort and datasets of the top six populated prefectures (2013–2015) as the test. Eight various algorithms were evaluated to predict the high-incidence OHCA days, defined as the daily events exceeding 75% tile of our dataset, using meteorological and chronological values: temperature, humidity, air pressure, months, days, national holidays, the day before the holidays, the day after the holidays, and New Year’s holidays. Additionally, we evaluated the contribution of each feature by Shapley Additive exPlanations (SHAP) values. The training cohort included 96,597 OHCA patients. The eXtreme Gradient Boosting (XGBoost) had the highest area under the receiver operating curve (AUROC) of 0.906 (95% confidence interval; 0.868–0.944). In the test cohorts, the XGBoost algorithms also had high AUROC (0.862–0.923). The SHAP values indicated that the “mean temperature on the previous day” impacted the most on the model. Algorithms using machine learning with meteorological and chronological information could predict OHCA events accurately.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献