A Systematic Review of Medical Expert Systems for Cardiac Arrest Prediction

Author:

Kaur Ishleen1,Ahmad Tanvir1,Doja M.N.1

Affiliation:

1. Jamia Millia Islamia Computer Engineering New Delhi India

Abstract

Background:: Predicting cardiac arrest is crucial for timely intervention and improved patient outcomes. Machine learning has yielded astounding results by offering tailored prediction analyses on complex data. Despite advancements in medical expert systems, there remains a need for a comprehensive analysis of their effectiveness and limitations in cardiac arrest prediction. This need arises because there are not enough existing studies that thoroughly cover the topic. Objective:: The systematic review aims to analyze the existing literature on medical expert systems for cardiac arrest prediction, filling the gaps in knowledge and identifying key challenges. Methods:: This paper adopts the PRISMA methodology to conduct a systematic review of 37 publications obtained from PubMed, Springer, ScienceDirect, and IEEE, published within the last decade. Careful inclusion and exclusion criteria were applied during the selection process, resulting in a comprehensive analysis that utilizes five integrated layers- research objectives, data collection, feature set generation, model training and validation employing various machine learning techniques. Results and Conclusion:: The findings indicate that current studies frequently use ensemble and deep learning methods to improve machine learning predictions’ accuracy. However, they lack adequate implementation of proper pre-processing techniques. Further research is needed to address challenges related to external validation, implementation, and adoption of machine learning models in real clinical settings, as well as integrating machine learning with AI technologies like NLP. This review aims to be a valuable resource for both novice and experienced researchers, offering insights into current methods and potential future recommendations.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3