Design and implementation of humidity sensor based on carbon nitride modified with graphene quantum dots

Author:

Morsy Mohamed,Gomaa Islam,Mokhtar M. M.,ElHaes Hanan,Ibrahim Medhat

Abstract

AbstractRelative humidity (RH) is one of the most important factors that deserve intensive study because of its impact on many aspects of life. In this work humidity sensor based on carbon nitride / graphene quantum dots (g-C3N4/GQDs) nanocomposites have been developed. The structure, morphology and composition properties of the g-C3N4/GQDs were investigated and analyzed by XRD, HR-TEM, FTIR, UV–Vis, Raman, XPS and BET surface area. The average particle size of GQDs was estimated from XRD to be 5 nm and confirmed using HRTEM. The HRTEM images prove that the GQDs are attached to the external surface of the g-C3N4. The measured BET surface area was found to be 216 m2/g, 313 m2/g, and 545 m2/g for GQDs, g-C3N4, and g-C3N4/GQDs respectively. The d-spacing and crystallite size were estimated from XRD and HRTEM and found in a good matching. The humidity sensing behavior of g-C3N4/GQDs was measured in a wide span of humidity from 7% up to 97% RH under different testing frequencies. The obtained results demonstrate good reversibility and fast response/recovery time. The implemented sensor exhibits a great application prospect in humidity alarm devices, automatic diaper alarms, and breath analysis, which have advantages such as strong anti-interference capability, low cost, and easy to use.

Funder

Housing & Building National Research Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3