Abstract
Abstract
In the current study, the effect of rGO ratio on the N-dopped TiO2 has been synthesized through sol–gel method. The prepared N-doped TiO2/rGO composites were examined for humidity sensing applications. The relationship between optical properties and the humidity sensing properties was studied. The structure, morphology, and bonding interaction have been examined using XRD, FT-IR, PL and HRTEM respectively. The average particle size as estimated from XRD and HRTEM was found to be about 9 nm. The optical properties have been studied using UV/ Vis. Spectroscopy. Further, optical parameters including refractive index and optical band gap energy have been estimated. The humidity sensing behavior of the resultant composites were evaluated in a wide range of humidity (7%–97% RH) at different testing frequencies. The optical band gap was found to be decreased as the amount of rGO increase. Among all prepared samples, both the optical parameters and humidity sensing experiments confirmed that the 0.5% rGO@N-dopped TiO2 sample is the best candidate for the humidity sensing applications. The best optimum testing frequency was demonstrated to be 50 Hz. The sensor demonstrates a fast response and recovery times of 13 s and 33 s with low hysteresis and large sensitivity. The humidity sensing mechanism was studied using complex impedance spectroscopy at different RH levels under testing frequency range from 50 Hz to 5 MHz and testing voltage of 1 VAC. The produced structure demonstrated a promising material for humidity measuring devices.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献