Dynamical Mechanism of Polarons and Bipolarons in Poly(p-Phenylene Vinylene)

Author:

Paula Fábio Luís de Oliveira,Castro Leonardo Luiz e,Junior Luiz Antonio Ribeiro,Júnior Rafael Timóteo de Sousa,Silva Geraldo Magela e,Neto Pedro Henrique de Oliveira

Abstract

AbstractStudies on Poly(p-Phenylene Vinylene) (PPV) and derivatives have experienced enormous growth since they were successfully used to fabricate the first efficient prototypes of Polymer Light-Emitting Diodes in the 90s. Despite this rapid progress, understanding the relationship between charge transport and the morphology in these materials remains a challenge. Here, we shed light on the understanding of the transport mechanism of polarons and bipolarons in PPVs by developing a two-dimensional tight-binding approach that includes lattice relaxation effects. Remarkably, the results show that the PPV lattice loses the energy related to its conjugation during time by transferring this amount of energy to electrons. Such a process for energy transfer permits the quasiparticles to overcome the potential barrier imposed by the local lattice deformations, that are formed in the presence of an additional charge and, consequently, their electric field assisted transport takes place. Within the framework of this transport mechanism, a better insight into the origin of the carrier mobility in PPV and derivatives can be achieved and would be a useful guide for improving their chemical structures and morphologies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3