Author:
Feuerherd M.,Sippel A.-K.,Erber J.,Baumbach J. I.,Schmid R. M.,Protzer U.,Voit F.,Spinner C. D.
Abstract
AbstractRapid, high-throughput diagnostic tests are essential to decelerate the spread of the novel coronavirus disease 2019 (COVID-19) pandemic. While RT-PCR tests performed in centralized laboratories remain the gold standard, rapid point-of-care antigen tests might provide faster results. However, they are associated with markedly reduced sensitivity. Bedside breath gas analysis of volatile organic compounds detected by ion mobility spectrometry (IMS) may enable a quick and sensitive point-of-care testing alternative. In this proof-of-concept study, we investigated whether gas analysis by IMS can discriminate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from other respiratory viruses in an experimental set-up. Repeated gas analyses of air samples collected from the headspace of virus-infected in vitro cultures were performed for 5 days. A three-step decision tree using the intensities of four spectrometry peaks correlating to unidentified volatile organic compounds allowed the correct classification of SARS-CoV-2, human coronavirus-NL63, and influenza A virus H1N1 without misassignment when the calculation was performed with data 3 days post infection. The forward selection assignment model allowed the identification of SARS-CoV-2 with high sensitivity and specificity, with only one of 231 measurements (0.43%) being misclassified. Thus, volatile organic compound analysis by IMS allows highly accurate differentiation of SARS-CoV-2 from other respiratory viruses in an experimental set-up, supporting further research and evaluation in clinical studies.
Funder
Technische Universität München
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Johns Hopkins Coronavirus Resource Center. COVID-19 Map - Johns Hopkins Coronavirus Resource Center. Johns Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/map.html (2020).
2. Tang, Y. W., Schmitz, J. E., Persing, D. H. & Stratton, C. W. Laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol. 58 (2020).
3. Rickman, H. M. et al. Nosocomial transmission of coronavirus disease 2019: A retrospective study of 66 hospital-acquired cases in a London teaching hospital. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa816 (2020).
4. Giri, A. K. & Rana, D. R. Charting the challenges behind the testing of COVID-19 in developing countries: Nepal as a case study. Biosaf. Heal. 2, 53–56 (2020).
5. Koczula, K. M. & Gallotta, A. Lateral flow assays. Essays Biochem. 60, 111–120 (2016).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献