Introduction of an adhesion factor to cube in cube models and its effect on calculated moduli of particulate composites

Author:

Rech Julian,Dorp Esther Ramakers–van,Michels Patrick,Möginger Bernhard,Hausnerova Berenika

Abstract

AbstractThe cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for filler content dependent Young’s moduli of particle filled composites assuming perfect filler matrix adhesion. Their formulas were chosen because of their simplicity, and recalculated using an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV approach led to expression of the composites moduli that allows introducing an adhesion factor kadh ranging from 0 and 1 to take into account reduced filler matrix adhesion. This adhesion factor scales the edge length of the cubic inclusions, thus reducing the stress transfer area between matrix and filler. Fitting the experimental data with the modified Paul model provides reasonable kadh for PA66, PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that stiffening only occurs if kadh exceeds $$\sqrt{{E}_{\mathrm{M}}/{E}_{\mathrm{F}}}$$ E M / E F and depends on the ratio of matrix modulus and filler modulus. The modified model allows for a quick calculation of any particle filled composites for known matrix modulus EM, filler modulus EF, filler volume content vF and adhesion factor kadh. Thus, finite element analysis (FEA) simulations of any particle filled polymer parts as well as materials selection are significantly eased. FEA of cubic and hexagonal EV arrangements show that stress distributions within the EV exhibit more shear stresses if one deviates from the cubic arrangement. At high filler contents the assumption that the property of the EV is representative for the whole composite, holds only for filler volume contents up to 15 or 20% (corresponding to 30 to 40 weight %). Thus, for vast majority of commercially available particulate composites, the modified model can be applied. Furthermore, this indicates that the cube in cube approach reaches two limits: (i) the occurrence of increasing shear stresses at filler contents above 20% due to deviations of EV arrangements or spatial filler distribution from cubic arrangements (singular), and (ii) increasing interaction between particles with the formation of particle network within the matrix violating the EV assumption of their homogeneous dispersion.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3