Modeling of Creep Behavior of Particulate Composites with Focus on Interfacial Adhesion Effect

Author:

Rech JulianORCID,Ramakers-van Dorp Esther,Möginger Bernhard,Hausnerova BerenikaORCID

Abstract

Evaluation of creep compliance of particulate composites using empirical models always provides parameters depending on initial stress and material composition. The effort spent to connect model parameters with physical properties has not resulted in success yet. Further, during the creep, delamination between matrix and filler may occur depending on time and initial stress, reducing an interface adhesion and load transfer to filler particles. In this paper, the creep compliance curves of glass beads reinforced poly(butylene terephthalate) composites were fitted with Burgers and Findley models providing different sets of time-dependent model parameters for each initial stress. Despite the finding that the Findley model performs well in a primary creep, the Burgers model is more suitable if secondary creep comes into play; they allow only for a qualitative prediction of creep behavior because the interface adhesion and its time dependency is an implicit, hidden parameter. As Young’s modulus is a parameter of these models (and the majority of other creep models), it was selected to be introduced as a filler content-dependent parameter with the help of the cube in cube elementary volume approach of Paul. The analysis led to the time-dependent creep compliance that depends only on the time-dependent creep of the matrix and the normalized particle distance (or the filler volume content), and it allowed accounting for the adhesion effect. Comparison with the experimental data confirmed that the elementary volume-based creep compliance function can be used to predict the realistic creep behavior of particulate composites.

Funder

Ministry of Education Youth and Sports

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3