A pro-oxidant combination of resveratrol and copper down-regulates multiple biological hallmarks of ageing and neurodegeneration in mice

Author:

Pal Kavita,Raghuram Gorantla V.,Dsouza Jenevieve,Shinde Sushma,Jadhav Vishalkumar,Shaikh Alfina,Rane Bhagyeshri,Tandel Harshali,Kondhalkar Dipali,Chaudhary Shahid,Mittra IndraneelORCID

Abstract

AbstractBillions of cells die in the body every day, and cell-free chromatin particles (cfChPs) which are released from them enter into the extracellular compartments of the body, including into the circulation. cfChPs are known to readily enter into healthy cells to damage their DNA and activate apoptotic and inflammatory pathways. We have hypothesized that lifelong assault on healthy cells by cfChPs is the underlying cause of ageing, and that ageing could be retarded by deactivating extra-cellular cfChPs. The latter can be effected by oxygen radicals that are generated upon admixing the nutraceuticals resveratrol and copper (R–Cu). The present study investigated whether prolonged administration of R–Cu would retard biological hallmarks of ageing. C57Bl/6 mice were divided into 3 equal groups; one group was sacrificed at age 3 months, and which acted as young controls. The remaining mice were allowed to age, and at age 10 months the experimental ageing group was given R–Cu by oral gavage twice daily for further 12 months at a dose of 1 mg/kg of R and 0.1 μg/kg of Cu. The control ageing group was given water by oral gavage twice daily for 12 months. Animals of both groups were sacrificed at age 22 months. R–Cu treatment led to reduction of several biological hallmarks of ageing in brain cells which included telomere attrition, amyloid deposition, DNA damage, apoptosis, inflammation, senescence, aneuploidy and mitochondrial dysfunction. R–Cu treatment also led to significant reduction in blood levels of glucose, cholesterol and C-reactive protein. These findings suggest that cfChPs may act as global instigators of ageing and neurodegeneration, and that therapeutic use of R–Cu may help to make healthy ageing an attainable goal.

Funder

Department of Atomic Energy, Government of India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3