The Application of Resveratrol Derivatives in Oral Cells Reduces the Oxidative Stress Induced by Glucocorticoids

Author:

D’Amico Emira1ORCID,Cinquini Chiara23ORCID,Petrini Morena1ORCID,Barone Antonio23ORCID,Iezzi Giovanna1,D’Ercole Simonetta1ORCID,De Filippis Barbara4ORCID,Pierfelice Tania Vanessa1ORCID

Affiliation:

1. Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy

2. Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy

3. Complex Unit of Stomatology and Oral Surgery, University-Hospital of Pisa, 56126 Pisa, Italy

4. Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy

Abstract

Oxidative stress and high levels of reactive oxygen species (ROS) are linked to various age-related diseases and chronic conditions, including damage to oral tissues. Dexamethasone (DEX), a widely used glucocorticoid in dentistry, can have side effects like increased ROS production and delayed wound healing. Resveratrol (RSV) is known for its antioxidant properties, but its limited bioavailability hinders its clinical use. This study investigated the potential of two RSV derivatives (1d and 1h) to address these limitations. The antioxidant abilities of 1d and 1h (5 μM) against DEX-induced oxidative stress (200 μM) were evaluated in human gingival fibroblasts (hGFs) and osteoblasts (hOBs). The effects of these compounds on cell viability, morphology, ROS levels, SOD activity, gene expression, and collagen production were evaluated. RSV derivatives, under DEX-induced oxidative stress condition, improved cell growth at 72 h (191.70 ± 10.92% for 1d+DEX and 184.80 ± 13.87% for 1h+DEX), morphology, and SOD activity (77.33 ± 3.35 OD for 1d+DEX; 76.87 ± 3.59 OD for 1h+DEX at 1 h), while reducing ROS levels (2417.33 ± 345.49 RFU for 1d+DEX and 1843.00 ± 98.53 RFU at 4 h), especially in hOBs. The co-treatment of RSV or derivatives with DEX restored the expression of genes that were downregulated by DEX, such as HO-1 (1.76 ± 0.05 for 1d+DEX and 1.79 ± 0.01 for 1h+DEX), CAT (0.97 ± 0.06 for 1d+DEX and 0.99 ± 0.03 for 1h+DEX), NRF2 (1.62 ± 0.04 for 1d+DEX and 1.91 ± 0.05 for 1h+DEX), SOD1 (1.63 ± 0.15 for 1d+DEX and 1.69 ± 0.04 for 1h+DEX). In addition, 1d and 1h preserved collagen production (111.79 ± 1.56 for 1d+DEX and 122.27 ± 1.56 for 1h+DEX). In conclusion, this study suggests that the RSV derivatives 1d and 1h hold promise as potential antioxidant agents to counteract DEX-induced oxidative stress. These findings contribute to the development of novel therapeutic strategies for managing oxidative stress-related oral conditions.

Funder

Giovanna Iezzi FAR-GRANT University of Chieti–Pescara Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3