Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality

Author:

Ye Lin,Zhao Xia,Bao Encai,Li Jianshe,Zou Zhirong,Cao Kai

Abstract

AbstractThe extensive use of chemical fertilizers poses serious collateral problems such as environmental pollution, pest resistance development and food safety decline. Researches focused on applying plant-beneficial microorganisms to partially replace chemical fertilizer use is increasing due to the requirement of sustainable agriculture development. Thus to investigate the possibility of a plant-beneficial Trichoderma strain and its bio-organic fertilizer product in saving chemical fertilizer application and in improving crop quality, a field trial and continuous pot experiments were carried out with tomato. Four treatments were set up: a reduced application of chemical fertilizer (75% of the conventional application) plus Trichoderma-enriched bio-organic fertilizer (BF), organic fertilizer (OF) or Trichoderma spore suspension (SS), with using the 100% rate of the conventional chemical fertilizer as the control (CF). The results showed that the total soluble sugar, Vitamin C and nitrate accumulations were, respectively, +up to 24%, +up to 57% and –up to 62% in the tomatoes of the BF treatment compared to those of the control (CF). And both of the pot and field trials revealed that reduced rates of chemical fertilizer plus bio-organic fertilizer produced tomato yields equivalent to those obtained using the 100% of the chemical fertilizer. However, application with the inoculant alone (SS) or combined with the organic fertilizer alone (OF) would lead to a yield decreases of 6–38% and 9–35% over the control. Since the increased abundance of soil microflora and the enhanced soil fertility frequently showed positive linear correlations especially in the BF-treated soils, we conclude that the efficacy of this bio-organic fertilizer for maintaining a stable tomato yield and improving tomato quality may be due to the improved soil microbial activity. Thus, the results suggest that the Trichoderma bio-organic fertilizer could be employed in combination with the appropriate rates of chemical fertilizers to get maximum benefits regarding yield, quality and fertilizer savings.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3