Arbuscular mycorrhizal fungi in oat-pea intercropping

Author:

Lee Alan,Neuberger Patrick,Omokanye Akim,Hernandez-Ramirez Guillermo,Kim Keunbae,Gorzelak Monika A.

Abstract

AbstractArbuscular mycorrhizal fungal diversity can be altered by intercropping plant species, as well as N fertilizer applications. This study examined the effects of oat-pea intercropping and N fertilizer addition on the richness and diversity of mycorrhizal species, as well as identified the most common arbuscular mycorrhizal fungi (AMF) genera recruited for oats and peas in two growing seasons (2019 and 2020). The AMF diversity was higher in an intercropped system compared to their respective monocropping system. Under drier conditions in 2019, arbuscular mycorrhizal richness decreased with N fertilizer addition in sole peas and increased with N fertilizer addition in sole oats, but no significant change in richness was observed in oat-pea intercropping. During the wetter growing season 2020, arbuscular mycorrhizal diversity increased when oat and pea were intercropped, compared to either sole oat or sole pea. Diversispora in sole pea was a significant indicator differentiating the root associated AMF community from sole oat. Claroideoglomus richness increased in peas in 2020, thus this genus could be moisture dependent. Paraglomus richness in oat-pea intercropping was similar to sole oat in 2019, and similar to sole pea in 2020. This can suggest that Paraglomus is an indicator of plant stress under intercropping, as based on the premise that stressed plants release more exudates, and the subsequent mycorrhizal associations favor these plants with higher exudation. Future investigations can further reveal the functions and benefits of these mycorrhizal genera in annual monocrop and intercropping systems.

Funder

Environmental Stewardship and Climate Change Group Program

Natural Sciences and Engineering Research Council of Canada

Agriculture and Agri-Food Canada’s Research Accelerating Innovation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3