Power efficient refined seizure prediction algorithm based on an enhanced benchmarking

Author:

Wang Ziyu,Yang Jie,Wu Hemmings,Zhu Junming,Sawan Mohamad

Abstract

AbstractDeep learning techniques have led to significant advancements in seizure prediction research. However, corresponding used benchmarks are not uniform in published results. Moreover, inappropriate training and evaluation processes used in various work create overfitted models, making prediction performance fluctuate or unreliable. In this study, we analyzed the various data preparation methods, dataset partition methods in related works, and explained the corresponding impacts to the prediction algorithms. Then we applied a robust processing procedure that considers the appropriate sampling parameters and the leave-one-out cross-validation method to avoid possible overfitting and provide prerequisites for ease benchmarking. Moreover, a deep learning architecture takes advantage of a one-dimension convolutional neural network and a bi-directional long short-term memory network is proposed for seizure prediction. The architecture achieves 77.6% accuracy, 82.7% sensitivity, and 72.4% specificity, and it outperforms the indicators of other prior-art works. The proposed model is also hardware friendly; it has 6.274 k parameters and requires only 12.825 M floating-point operations, which is advantageous for memory and power constrained device implementations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective Detection of Epileptic Seizures through EEG Signals Using Deep Learning Approaches;Machine Learning and Knowledge Extraction;2023-12-11

2. Transfer Learning-based Seizure Detection on Multiple Channels of Paediatric EEGs;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

3. The White Matter Functional Abnormalities in Patients with Transient Ischemic Attack: A Reinforcement Learning Approach;Neural Plasticity;2022-10-17

4. SPERTL: Epileptic Seizure Prediction using EEG with ResNets and Transfer Learning;2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI);2022-09-27

5. Epileptic Seizure Prediction Based on EEG by Auto-Machine Learning;2022 IEEE International Conference on Real-time Computing and Robotics (RCAR);2022-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3