Addressing data limitations in seizure prediction through transfer learning

Author:

Lopes Fábio,Pinto Mauro F.,Dourado António,Schulze-Bonhage Andreas,Dümpelmann Matthias,Teixeira César

Abstract

AbstractAccording to the literature, seizure prediction models should be developed following a patient-specific approach. However, seizures are usually very rare events, meaning the number of events that may be used to optimise seizure prediction approaches is limited. To overcome such constraint, we analysed the possibility of using data from patients from an external database to improve patient-specific seizure prediction models. We present seizure prediction models trained using a transfer learning procedure. We trained a deep convolutional autoencoder using electroencephalogram data from 41 patients collected from the EPILEPSIAE database. Then, a bidirectional long short-term memory and a classifier layers were added on the top of the encoder part and were optimised for 24 patients from the Universitätsklinikum Freiburg individually. The encoder was used as a feature extraction module. Therefore, its weights were not changed during the patient-specific training. Experimental results showed that seizure prediction models optimised using pretrained weights present about four times fewer false alarms while maintaining the same ability to predict seizures and achieved more 13% validated patients. Therefore, results evidenced that the optimisation using transfer learning was more stable and faster, saving computational resources. In summary, adopting transfer learning for seizure prediction models represents a significant advancement. It addresses the data limitation seen in the seizure prediction field and offers more efficient and stable training, conserving computational resources. Additionally, despite the compact size, transfer learning allows to easily share data knowledge due to fewer ethical restrictions and lower storage requirements. The convolutional autoencoder developed in this study will be shared with the scientific community, promoting further research.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3