Classification and prediction of drought and salinity stress tolerance in barley using GenPhenML

Author:

Akbari Mahjoubeh,Sabouri Hossein,Sajadi Sayed Javad,Yarahmadi Saeed,Ahangar Leila

Abstract

AbstractGenetic and agronomic advances consistently lead to an annual increase in global barley yield. Since abiotic stresses (physical environmental factors that negatively affect plant growth) reduce barley yield, it is necessary to predict barley resistance. Artificial intelligence and machine learning (ML) models are new and powerful tools for predicting product resilience. Considering the research gap in the use of molecular markers in predicting abiotic stresses, this paper introduces a new approach called GenPhenML that combines molecular markers and phenotypic traits to predict the resistance of barley genotypes to drought and salinity stresses by ML models. GenPhenML uses feature selection algorithms to determine the most important molecular markers. It then identifies the best model that predicts atmospheric resistance with lower MAE, RMSE, and higher R2. The results showed that GenPhenML with a neural network model predicted the salinity stress resistance score with MAE, RMSE and R2 values of 0.1206, 0.0308 and 0.9995, respectively. Also, the NN model predicted drought stress scores with MAE, RMSE and R2 values of 0.0727, 0.0105 and 0.9999, respectively. The GenPhenML approach was also used to classify barley genotypes as resistant and stress-sensitive. The results showed that the accuracy, accuracy and F1 score of the proposed approach for salinity and drought stress classification were higher than 97%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3