Author:
Altahan Mahmoud Fatehy,AbdelAzzem Magdi
Abstract
AbstractOrthophosphate is an essential macronutrient in natural water that controls primary production and strongly influences the global ocean carbon cycle. Electrochemical determination of orthophosphate is highly recommended because electrochemistry provides the simplest means of determination. Here the determination of orthophosphate based on the formation of a phosphomolybdate complex is reported. Mixed-valent molybdenum oxide (MoxOy) was prepared by cyclic voltammetry on poly-1,2-diaminoanthraquinone (1,2-DAAQ), which was performed by cyclic voltammetry on the surface of a glassy carbon electrode under pre-optimized conditions for the thickness of the modified electrode layers. The proposed modified electrode was used for square-wave voltammetry of orthophosphate ions under pre-optimized square-wave parameters (i.e., frequency and amplitude) in strongly acidic medium (pH < 1). The linear range was 0.05–4 µM with a limit of quantification (LOD) of 0.0093 µM with no effect on two peaks due to cross interference from silicate. Furthermore, MoxOy/PDAAQ shows good reproducibility with a relative standard deviation (RSD) of 2.17% for the peak at 0.035 V and 3.56% for the peak at 0.2 V. Real seawater samples were also analyzed for PO43− analysis by UV spectrophotometry and the results were compared with the measurement results of our proposed electrode, with good recoveries obtained.
Funder
National Water Research Center
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献