AutoGIS processing for site selection for solar pond development as efficient water treatment plants in Egypt

Author:

Altahan Mahmoud Fatehy,Nower Mohamed

Abstract

AbstractThe increasing demand for renewable and environmentally friendly energy sources is a top priority for many countries around the world. It is obvious that renewable solar energy will help to meet most of the energy demand in the coming years. A solar pond is a huge Salt artificial Lake that serves as a solar energy collection system. However, site selection is a critical factor that affects the effectiveness and lifetime of a solar pond. Here, we present an innovative methodology for site selection based on three environmental factors, including direct solar irradiance (DNI), temperature, and wind speed. Our approach uses Python programming and clustering analysis with several libraries, including Pandas, Geopandas, Rasterio, Osgeo, and Sklearn, to analyse and process data collected over a 30-year period from NASA power. This method was applied to the geographic boundaries of Egypt, but the methods can be applied to any spatial context if the same dataset is available. The results show that Egypt has a potential land area of 500 km2 suitable for solar ponds construction along the border with Sudan throughout the year, including 2000 km2 in winter (between January and March), 800 km2 in spring (between April and June), 900 km2 in summer (between July and September), and the largest area of 3700 km2 (between October and December), most of which is located in the south of the Eastern Desert and around the Nile River. Notably, the northwestern region, close to the Mediterranean Sea on the border with Libya, exhibits suitability for solar pond development, with consistent performance throughout the year. Our results provide an efficient way for GIS and data processing and could be useful for implementing new software to find the best location for solar ponds development. This could be beneficial for those interested in investing in renewable energy and using solar ponds as an efficient water treatment plant.

Funder

National Water Research Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3