Impact of dispersion time interval and particle size on release profiles of propranolol HCl and carbamazepines from microparticle blends system

Author:

Muhaimin Muhaimin,Chaerunisaa Anis Yohana,Bodmeier Roland

Abstract

AbstractThe objective of this study was to investigate the effect of dispersion time interval (DTI) on physicochemical properties of drug following the incorporation of propranolol HCl (Pro) and carbamazepine (CBZ) within ethyl cellulose (EC) microparticle blends using solvent evaporation method. The first Pro emulsion and second CBZ oil phase were dispersed in an external aqueous phase, with DTI of 0 and 60 min. The morphology of microparticle blends were characterized by SEM. The particle size mean of the emulsion droplets/hardened microparticles were monitored by FBRM. Encapsulation efficiency (EE) and in vitro drug release were also investigated. The resulting microparticle blends were spherical and formed two populations. The particle size mean of microparticle blends ranged from 113.27 µm to 122.42 µm. The EE was 77.28% to 78.64% for Pro and 96.48% to 98.64% for CBZ. FBRM studies showed that the size of microparticle blend prepared as W/O/W (Pro) and O/W (CBZ) system with DTI of 60 min and stirring time 4 h were larger than those prepared with DTI of 0 min. In vitro drug release studies after 28 days that revealed the CBZ release (58.72%) was faster than Pro release (43.16%). Investigation on surface morphology by SEM showed that the second drug CBZ which added as the oil phase in the W/O/W emulsion system had blocked the pores on the surface Pro microparticles prepared from the first primary emulsion, therefore affecting the drug release. This blocking effects of second drug (CBZ) on first emulsion microparticles (Pro) depended on the DTI. This phenomenon is only applicable if the first primary emulsion is W/O/W system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3