PREPARATION AND EVALUATION OF PROPRANOLOL HCL AND CARBAMAZEPINE RELEASE PROFILES FROM POLY(Є-CAPROLACTONE) MICROPARTICLE BLENDS SYSTEM

Author:

MUHAIMIN MUHAIMINORCID,CHAERUNISAA ANIS YOHANA,HAZRINA AGHNIA

Abstract

Objective: The goal of this research was to look into the physicochemical properties of poly(-caprolactone) microparticle blends that contained medicines of various solubilities (Propranolol HCl [Pro] and carbamazepine [CBZ]). Methods: W/O/W emulsion for Pro and O/W emulsion for CBZ were used to create microparticle blends. With dispersion time intervals (DTI) of 0 and 60 min, the Pro emulsion (W/O) and CBZ oil phase (O) were dispersed in an external aqueous phase (W). Scanning electron microscopy was used to examine the morphology of microparticle blends (SEM). Focused beam reflectance measurements were utilized to monitor the particle size mean of emulsion droplets/hardened microparticles (FBRM). In phosphate buffer (pH 7.4), encapsulation efficiency (EE) and in vitro drug release were also examined. Results: The final microparticle blends generated by solvent evaporation method were spherical and had two populations, according to the findings. The size of microparticle blends prepared with DTI 60 min and stirring duration 4 h was bigger than those prepared with DTI 0 min, according to FBRM data. In microparticle blends, encapsulation efficiency ranged from 62.05±3.74 percent to 66.38±4.16 percent for Pro and 70.56±4.62 percent to 73.85±4.11 percent for CBZ. After 28 d, drug release in phosphate buffer revealed that Pro release (33%) was shorter than CBZ release (60%) from microparticle blends with DTI 60 min. This was related to the interaction of the oil phase (CBZ) with hard particles from the primary emulsion (Pro), in which the oil phase occluded and covered surface structure of the harsh particles from the primary emulsion. Conclusion: Novel microparticle blends comprising drugs/medicines with varying solubilities (e. g. propranolol HCl and carbamazepine) have a lot of promise as controlled-release drug delivery systems. The physical properties of microparticle blends were impacted by the type of dispersion time interval used.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3