Study of cooling experiment and simulation for edible oil storage

Author:

Xiao Du,Yan Chen,Desheng Sun

Abstract

AbstractThis paper proposes a refrigerant cooling method using an inner tube in a storage tank to improve the cooling performance and thermal uniformity during the storing of edible oil. With a prototype of an oil tank in Central Grain Reserve of Zhenjiang, the experimental oil tank was built in a scale of 50:1. Both natural and manual cooling experiments were carried out for the experimental tank. The manual cooling process involved two supplying modes for the refrigerant tube (top and bottom) and four different refrigerant temperatures (10 ℃, 12 ℃, 14 ℃, 16 ℃). The experimental results show that, compared with natural cooling, manual cooling can effectively reduce the temperature difference and thermal stratification between upper and lower layers. The temperature difference is 6.79 ℃, 1.93 ℃, and 3.67 ℃ for the natural cooling, manual top supplying, and manual bottom supplying mode, respectively. Furthermore, for the two manual modes, the cooling efficiency of bottom supplying is 21.4% higher than that of the top supplying, and the average oil temperature drops by 0.8–1 ℃. Based on experimental results, different working conditions (20, 40, and 60 ml/s) were simulated to determine the optimal flow rate for bottom supplying mode. The simulation results indicate that the low flow rate (20 ml/s) corresponds to the best thermal uniformity, and the maximum temperature has no obvious change under different flow rate conditions. Therefore, it is not necessary to increase the flow rate to improve cooling efficiency considering the rising energy consumption.

Funder

Innovative Funds Plan of Henan University of Technology

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3