Competing-risk analysis of coronavirus disease 2019 in-hospital mortality in a Northern Italian centre from SMAtteo COvid19 REgistry (SMACORE)

Author:

Zuccaro Valentina,Celsa Ciro,Sambo Margherita,Battaglia Salvatore,Sacchi Paolo,Biscarini Simona,Valsecchi Pietro,Pieri Teresa Chiara,Gallazzi Ilaria,Colaneri Marta,Sachs Michele,Roda Silvia,Asperges Erika,Lupi Matteo,Di Filippo Alessandro,Seminari Elena,Di Matteo Angela,Novati Stefano,Maiocchi Laura,Enea Marco,Attanasio Massimo,Cammà Calogero,Bruno Raffaele

Abstract

AbstractAn accurate prediction of the clinical outcomes of European patients requiring hospitalisation for Coronavirus Disease 2019 (COVID-19) is lacking. The aim of the study is to identify predictors of in-hospital mortality and discharge in a cohort of Lombardy patients with COVID-19. All consecutive hospitalised patients from February 21st to March 30th, 2020, with confirmed COVID-19 from the IRCCS Policlinico San Matteo, Pavia, Lombardy, Italy, were included. In-hospital mortality and discharge were evaluated by competing risk analysis. The Fine and Gray model was fitted in order to estimate the effect of covariates on the cumulative incidence functions (CIFs) for in-hospital mortality and discharge. 426 adult patients [median age 68 (IQR 56 to 77 years)] were admitted with confirmed COVID-19 over a 5-week period; 292 (69%) were male. By 21 April 2020, 141 (33%) of these patients had died, 239 (56%) patients had been discharged and 46 (11%) were still hospitalised. Among these 46 patients, updated as of 30 May, 2020, 5 (10.9%) had died, 8 (17.4%) were still in ICU, 12 (26.1%) were transferred to lower intensity care units and 21 (45.7%) were discharged. Regression on the CIFs for in-hospital mortality showed that older age, male sex, number of comorbidities and hospital admission after March 4th were independent risk factors associated with in-hospital mortality. Older age, male sex and number of comorbidities definitively predicted in-hospital mortality in hospitalised patients with COVID-19.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3