Cumulative Incidence Functions for Competing Risks Survival Data from Subjects with COVID-19

Author:

Haque Mohammad Anamul1ORCID,Cortese Giuliana1ORCID

Affiliation:

1. Department of Statistical Sciences, University of Padova, 35121 Padova, Italy

Abstract

Competing risks survival analysis is used to answer questions about the time to occurrence of events with the extension of multiple causes of failure. Studies that investigate how clinical features and risk factors of COVID-19 are associated with the survival of patients in the presence of competing risks (CRs) are limited. The main objective of this paper is, under a CRs setting, to estimate the Cumulative Incidence Function (CIF) of COVID-19 death, the CIF of other-causes death, and the probability of being cured in subjects with COVID-19, who have been under observation from the date of symptoms to the date of death or exit from the study because they are cured. In particular, we compared the non-parametric estimator of the CIF based on the naive technique of Kaplan–Meier (K–M) with the Aalen–Johansen estimator based on the cause-specific approach. Moreover, we compared two of the most popular regression approaches for CRs data: the cause-specific hazard (CSH) and the sub-distribution hazard (SDH) approaches. A clear overestimation of the CIF function over time was observed under the K–M estimation technique. Moreover, exposure to asthma, diabetes, obesity, older age, male sex, black and indigenous races, absence of flu vaccine, admission to the ICU, and the presence of other risk factors, such as immunosuppression and chronic kidney, neurological, liver, and lung diseases, significantly increased the probability of COVID-19 death. The highest hazard ratio of 2.03 was observed for subjects with an age greater than 70 years compared with subjects aged 50–60 years. The SDH approach showed slightly higher survival probabilities compared with the CSH approach. An important foundation for producing precise individualized predictions was provided by the competing risks regression models discussed in this paper. This foundation allowed us, in general, to more realistically model complex data, such as the COVID-19 data, and can be used, for instance, by many modern statistical learning and personalized medicine techniques to obtain more accurate conclusions.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3