Soil organic carbon cycling in response to simulated soil moisture variation under field conditions

Author:

Singh Shikha,Mayes Melanie A.,Shekoofa Avat,Kivlin Stephanie N.,Bansal Sangeeta,Jagadamma Sindhu

Abstract

AbstractThe combination of extended dry periods and high intensity rainfall, common in the southeastern US, leads to greater variability in soil moisture and consequently increases uncertainty to microbial processes pertinent to soil carbon (C) mineralization. However, field-based findings on soil moisture sensitivity to soil C cycling are very limited. Therefore, a field experiment was conducted in 2018 and 2019 on a soybean (Glycine max L.) cropland in the southeastern US with three soil moisture treatments: drought (simulated using rainout-shelter from June to October in each year), rainfed (natural precipitation), and irrigated (irrigation and precipitation). Soil respiration was measured weekly from May to November in both years. Soil samples were collected multiple times each year from 0–5, 5–15, and 15–30 cm depths to determine microbial biomass C (MBC), extractable organic C (EOC), hydrolytic enzyme activities, and fungal abundance. The cumulative respiration under drought compared to other treatments was lower by 32% to 33% in 2018 and 38% to 45% in 2019. Increased MBC, EOC, and fungal abundance were observed under drought than other treatments. Specific enzyme activity indicated fewer metabolically active microbes under drought treatment compared to rainfed and irrigated treatments. Also, maintenance of enzyme pool was observed under drought condition. These results provide critical insights on microbial metabolism in response to soil moisture variation and how that influences different pools of soil C under field conditions.

Funder

U.S. Department of Energy (DOE) Office of Biological and Environmental Research through the Terrestrial Ecosystem Science Scientific Focus Area at the Oak Ridge National Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3