Interactive Effect of Residue Quality and Agroecologies Modulate Soil C‐ and N‐Cycling Enzyme Activities, Microbial Gene Abundance, and Metabolic Quotient

Author:

Agumas BirhanuORCID,Agegnehu GetachewORCID,Feyisa Tesfaye

Abstract

Understanding interactive effect of agroecology explained by rainfall, temperature, elevation, and biochemical composition of residues on soil microbial abundance and functions is crucial for unraveling soil ecological processes. This study aimed to investigate how agroecology and residue quality influence enzymatic activities, gene abundance, and metabolic quotient (qCO2). A field experiment was conducted using Leucaena leucocephala (LL) (high‐quality residue) and Acacia decurrens (AD) (low‐quality residue) in soils of highland and midland agroecologies. These residues differed in decomposability, characterized by a ratio of (lignin + polyphenol)/N of 5.0 for high‐quality residue versus 21.0 for low‐quality residue. Two experimental setups were employed: soil with litter mixture in polyvinyl chloride (PVC) tubes and residues buried in the surface soil using litterbags. Soil samples were collected after 30, 120, and 270 days of incubation and analyzed for biochemical properties, enzyme activities, and the abundance of nitrifying and total archaea and bacteria. Soil respiration was also measured at different intervals in the field. qCO2 was calculated using microbial biomass (MBC) and daily respiration (DCO2). Linear mixed model (P < 0.05) revealed that combined factors of agroecologies and residue qualities affected enzymatic activities, microbial abundance, soil properties, and qCO2. Agroecological differences exerted a greater influence than residue qualities. Positive and negative significant correlations (P < 0.05, r = 0.27 to 0.67) were found between different C and N pools as well as enzymatic activities. Positive correlations (P < 0.05) were observed between the abundance of total bacteria, total archaea, and ammonia‐oxidizing bacteria versus leucine‐aminopeptidases. qCO2 was influenced more by β‐xylosidase, leucine‐aminopeptidases, and thermolysin‐like neutral metalloproteases (TLP) than by β‐D‐glucosidase and β‐D‐cellobiohydrolase. Leucine‐aminopeptidases and TLP were identified as rate‐limiting factors for protein and peptide decomposition, while β‐xylosidase controlled hemicellulose degradation. In summary, this study provides insights into the intricate relationships between agroecology, residue quality, enzymatic activities, and microbial communities, shedding light on key processes governing soil ecological functions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3