Multiclass malaria parasite recognition based on transformer models and a generative adversarial network

Author:

Tan Dianhuan,Liang Xianghui

Abstract

AbstractMalaria is an extremely infectious disease and a main cause of death worldwide. Microscopic examination of thin slide serves as a common method for the diagnosis of malaria. Meanwhile, the transformer models have gained increasing popularity in many regions, such as computer vision and natural language processing. Transformers also offer lots of advantages in classification task, such as Fine-grained Feature Extraction, Attention Mechanism etc. In this article, we propose to assist the medical professionals by developing an effective framework based on transformer models and a generative adversarial network for multi-class plasmodium classification and malaria diagnosis. The Generative Adversarial Network is employed to generate extended training samples from multiclass cell images, with the aim of enhancing the robustness of the resulting model. We aim to optimize plasmodium classification to achieve an exact balance of high accuracy and low resource consumption. A comprehensive comparison of the transformer models to the state-of-the-art methods proves their efficiency in the classification of malaria parasite through thin blood smear microscopic images. Based on our findings, the Swin Transformer model and MobileVit outperform the baseline architectures in terms of precision, recall, F1-score, specificity, and FPR on test set (the data was divided into train: validation: test splits). It is evident that the Swin Transformer achieves superior detection performance (up to 99.8% accuracy), while MobileViT demonstrates lower memory usage and shorter inference times. High accuracy empowers healthcare professionals to conduct precise diagnoses, while low memory usage and short inference times enable the deployment of predictive models on edge devices with limited computational and memory resources.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3