FlySilico: Flux balance modeling of Drosophila larval growth and resource allocation

Author:

Schönborn Jürgen Wilhelm,Jehrke Lisa,Mettler-Altmann Tabea,Beller MathiasORCID

Abstract

AbstractOrganisms depend on a highly connected and regulated network of biochemical reactions fueling life sustaining and growth promoting functions. While details of this metabolic network are well established, knowledge of the superordinate regulatory design principles is limited. Here, we investigated by iterative wet lab and modeling experiments the resource allocation process during the larval development of Drosophila melanogaster. We chose this system, as survival of the animals depends on the successful allocation of their available resources to the conflicting processes of growth and storage metabolite deposition. First, we generated “FlySilico”, a curated metabolic network of Drosophila, and performed time-resolved growth and metabolite measurements with larvae raised on a holidic diet. Subsequently, we performed flux balance analysis simulations and tested the predictive power of our model by simulating the impact of diet alterations on growth and metabolism. Our predictions correctly identified the essential amino acids as growth limiting factor, and metabolic flux differences in agreement with our experimental data. Thus, we present a framework to study important questions of resource allocation in a multicellular organism including process priorization and optimality principles.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3