Metabolic Modeling of Hermetia illucens Larvae Resource Allocation for High-Value Fatty Acid Production

Author:

Grausa Kristina12,Siddiqui Shahida A.34ORCID,Lameyer Norbert4,Wiesotzki Karin4,Smetana Sergiy4ORCID,Pentjuss Agris12ORCID

Affiliation:

1. Department of Computer Systems, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia

2. Institute of Microbiology and Biotechnology, University of Latvia, LV-1050 Riga, Latvia

3. Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, D-94315 Straubing, Germany

4. German Institute of Food Technologies (DIL e.V.), 49610 Quakenbrück, Germany

Abstract

All plant and animal kingdom organisms use highly connected biochemical networks to facilitate sustaining, proliferation, and growth functions. While the biochemical network details are well known, the understanding of the intense regulation principles is still limited. We chose to investigate the Hermetia illucens fly at the larval stage because this stage is a crucial period for the successful accumulation and allocation of resources for the subsequent organism’s developmental stages. We combined iterative wet lab experiments and innovative metabolic modeling design approaches to simulate and explain the H. illucens larval stage resource allocation processes and biotechnology potential. We performed time-based growth and high-value chemical compound accumulation wet lab chemical analysis experiments on larvae and the Gainesville diet composition. We built and validated the first H. illucens medium-size, stoichiometric metabolic model to predict the effects of diet-based alterations on fatty acid allocation potential. Using optimization methods such as flux balance and flux variability analysis on the novel insect metabolic model, we predicted that doubled essential amino acid consumption increased the growth rate by 32%, but pure glucose consumption had no positive impact on growth. In the case of doubled pure valine consumption, the model predicted a 2% higher growth rate. In this study, we describe a new framework for researching the impact of dietary alterations on the metabolism of multi-cellular organisms at different developmental stages for improved, sustainable, and directed high-value chemicals.

Funder

FACCE SURPLUS

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3