Cold climate adaptation is a plausible cause for evolution of multicellular sporulation in Dictyostelia

Author:

Lawal Hajara M.,Schilde Christina,Kin Koryu,Brown Matthew W.,James John,Prescott Alan R.,Schaap Pauline

Abstract

AbstractUnicellular protozoa that encyst individually upon starvation evolved at least eight times into organisms that instead form multicellular fruiting bodies with spores. The Dictyostelia are the largest and most complex group of such organisms. They can be subdivided into 4 major groups, with many species in groups 1–3 having additionally retained encystment. To understand fitness differences between spores and cysts, we measured long-term survival of spores and cysts under climate-mimicking conditions, investigated spore and cyst ultrastructure, and related fitness characteristics to species ecology. We found that spores and cysts survived 22 °C equally well, but that spores survived wet and dry frost better than cysts, with group 4 spores being most resilient. Spore walls consist of three layers and those of cysts of maximally two, while spores were also more compacted than cysts, with group 4 spores being the most compacted. Group 4 species were frequently isolated from arctic and alpine zones, which was rarely the case for group 1–3 species. We inferred a fossil-calibrated phylogeny of Dictyostelia, which showed that its two major branches diverged 0.52 billion years ago, following several global glaciations. Our results suggest that Dictyostelium multicellular sporulation was a likely adaptation to a cold climate.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3