Autophagy of the somatic stalk cells nurses the propagating spores of Dictyostelid social amoebas

Author:

Du Qingyou,Schaap PaulineORCID

Abstract

Background:  Autophagy (self-feeding) assists survival of starving cells by partial self-digestion, while dormancy as cysts, spores or seeds enables long-term survival. Starving Dictyostelium amoebas construct multicellular fruiting bodies with spores and stalk cells, with many Dictyostelia still able to encyst individually like their single-celled ancestors. While autophagy mostly occurs in the somatic stalk cells, autophagy gene knock-outs in Dictyostelium discoideum (D. discoideum) formed no spores and lacked cAMP induction of prespore gene expression. Methods: To investigate whether autophagy also prevents encystation, we knocked-out autophagy genes atg5 and atg7 in the dictyostelid Polysphondylium pallidum, which forms both spores and cysts. We measured spore and cyst differentiation and viability in the knock-out as well as stalk and spore gene expression and its regulation by cAMP. We tested a hypothesis that spores require materials derived from autophagy in stalk cells. Sporulation requires secreted cAMP acting on receptors and intracellular cAMP acting on PKA. We compared the morphology and viability of spores developed in fruiting bodies with spores induced from single cells by stimulation with cAMP and 8Br-cAMP, a membrane-permeant PKA agonist. Results: Loss of autophagy in P. pallidum reduced but did not prevent encystation. However, spore, but not stalk differentiation, and cAMP-induced prespore gene expression were lost. Spores induced in vitro by cAMP and 8Br-cAMP were smaller and rounder than spores formed multicellularly and while they were not lysed by detergent they did not germinate, unlike multicellular spores. Conclusions: The stringent requirement of sporulation on both multicellularity and autophagy, which occurs mostly in stalk cells, suggests that stalk cells nurse the spores through autophagy. This highlights autophagy as a major cause for somatic cell evolution in early multicellularity.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3