Author:
Xiao Bo,Rutherford Gugu N.,Sharma Amrit P.,Pradhan Sangram K.,Bonner Carl E.,Bahoura Messaoud J.
Abstract
AbstractCombining two materials in a nanoscale level can create a composite with new functionalities and improvements in their physical and chemical properties. Here we present a high-throughput approach to produce a nanocomposite consisting of metal nanoparticles and semiconductor oxide nanostructures. Volmer-Weber growth, though unfavorable for thin films, promotes nucleation of dense and isolated metal nanoparticles on crystalline oxide nanostructures, resulting in new material properties. We demonstrate such a growth of Au nanoparticles on SnO2 nanostructures and a remarkable sensitivity of the nanocomposite for detecting traces of analytes in surface enhanced Raman spectroscopy. Au nanoparticles with tunable size enable us to modify surface wettability and convert hydrophilic oxide surfaces into super-hydrophobic with contact angles over 150°. We also find that charge injection through electron beam exposure shows the same effect as photo-induced charge separation, providing an extra Raman enhancement up to an order of magnitude.
Funder
National Science Foundation, United States
National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献