Integrated transcriptomic meta-analysis and comparative artificial intelligence models in maize under biotic stress

Author:

Nazari LeylaORCID,Aslan Muhammet FatihORCID,Sabanci KadirORCID,Ropelewska EwaORCID

Abstract

AbstractBiotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3