Hybridizing Long Short-Term Memory and Bi-Directional Long Short-Term Memory Models for Efficient Classification: A Study on Xanthomonas axonopodis pv. phaseoli (XaP) in Two Bean Varieties

Author:

Kursun Ramazan1ORCID,Gur Aysegul2ORCID,Bastas Kubilay Kurtulus2ORCID,Koklu Murat3ORCID

Affiliation:

1. Guneysinir Vocational School, Selcuk University, 42490 Guneysinir, Konya, Turkey

2. Department of Plant Protection, Faculty of Agriculture, Selcuk University, 42250 Selcuklu, Konya, Turkey

3. Department of Computer Engineering, Selcuk University, 42250 Selcuklu, Konya, Turkey

Abstract

This study was conducted on Xanthomonas axonopodis pv, which causes significant economic losses in the agricultural sector. Here, we study a common bacterial blight disease caused by the phaseoli (XaP) bacterial pathogen on Üstün42 and Akbulut bean genera. In this study, a total of 4000 images, healthy and diseased, were used for both bean breeds. These images were classified by AlexNet, VGG16, and VGG19 models. Later, reclassification was performed by applying pre-processing to the raw images. According to the results obtained, the accuracy rates of the pre-processed images classified by the VGG19, VGG16 and AlexNet models were determined as 0.9213, 0.9125 and 0.8950, respectively. The models were then hybridized with LSTM and BiLSTM for raw and pre-processed images and new models were created. When the performance of these hybrid models was evaluated, it was found that the models hybridized with LSTM were more successful than the simple models, while the models hybridized with BiLSTM gave better results than the models hybridized with LSTM. In particular, the VGG19+BiLSTM model attracted attention by achieving 94.25% classification accuracy with pre-processed images. This study emphasizes the effectiveness of image processing techniques in agriculture in the field of disease detection and is important as a new dataset in the literature for evaluating the performance of hybridized models.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3