1. Al-Fahdawi, S., et al.: A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology (2018). http://hdl.handle.net/10454/15684. Accessed 9 Aug 2020
2. Al-Waisy, A.S., Qahwaji, R., Ipson, S., Al-Fahdawi, S.: A multimodal deep learning framework using local feature representations for face recognition. Mach. Vis. Appl. 29(1), 35–54 (2018a). https://doi.org/10.1007/s00138-017-0870-2
3. Al-Waisy, A.S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., Nagem, T.A.M.: A multi-biometric iris recognition system based on a deep learning approach. Pattern Anal. Appl. 21(3), 783–802 (2018b). https://doi.org/10.1007/s10044-017-0656-1
4. Basavaprasad, B., Hegadi, R.S.: Improved grabcut technique for segmentation of color image. Int. J. Comput. Appl. (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.672.6067&rep=rep1&type=pdf. Accessed 16 May 2020
5. Falk, T., Mai, D., Bensch, R., Çiçek, Ö., et al.: U-Net: deep learning for cell counting, detection, and morphometry (2019). https://sci-hub.im/https://www.nature.com/articles/s41592-018-0261-2. Accessed 17 May 2020