Genetic and genomic analysis for cocoon yield traits in silkworm

Author:

Fang Shou-Min,Zhou Qiu-Zhong,Yu Quan-You,Zhang Ze

Abstract

AbstractDomestic species provides a powerful model for examining genetic mechanisms in the evolution of yield traits. The domestic silkworm (Bombyx mori) is an important livestock species in sericulture. While the mechanisms controlling cocoon yield are largely unknown. Here, using B. mori and its wild relative B. mandarina as intercross parents, 100 BC1 individuals were sequenced by restriction site-associated DNA sequencing (RAD-Seq). The linkage map contained 9,632 markers was constructed. We performed high-resolution quantitative trait locus (QTL) mapping for four cocoon yield traits. A total of 11 QTLs were identified, including one yield-enhancing QTL from wild silkworm. By integrating population genomics and transcriptomic analysis with QTLs, some favourable genes were revealed, including 14 domestication-related genes and 71 differentially expressed genes (DEGs) in the fifth-instar larval silk gland transcriptome between B. mori and B. mandarina. The relationships between the expression of two important candidate genes (KWMTBOMO04917 and KWMTBOMO12906) and cocoon yield were supported by quantitative real-time PCR (qPCR). Our results provide some new insights into the molecular mechanisms of complex yield traits in silkworm. The combined method might be an efficient approach for identifying putative causal genes in domestic livestock and wild relatives.

Funder

Initiation Fund of China West Normal University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3